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Anomalous, quasilinear, and percolative regimes for magnetic-field-line transport
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We studied a magnetic turbulence axisymmetric around the unperturbed magnetic field for cases having
different ratiosl /I, . We find, in addition to the fact that a higher fluctuation le¥8I/B, makes the system
more stochastic, that by increasing the raid, at fixed 6B/B,, the stochasticity increases. It appears that the
different transport regimes can be organized in terms of the Kubo nuRv¢sB/B,) (1) /1,). The simulation
results are compared with the two analytical limits, that is the percolative limit and the quasilinear limit. When
R<1 weak chaos, closed magnetic surfaces, and anomalous transport regimes are foundR~hére
diffusion regime is Gaussian, and the quasilinear scaling of the diffusion coeffidieni 5B/B)? is recov-
ered. Finally, forR>1 the percolation scaling of the diffusion coefficidht ~ (5B/B,)°" is obtained.

PACS numbgs): 52.25.Fi, 02.50.Ey, 95.30.Qd, 05.4:

[. INTRODUCTION netohydrodynamic turbulence.
For axially symmetric turbulence, the Fourier spectral am-

The transport of heat and particles in magnetized plasmaglitude 6B(k) can be represented as
depends on the electromagnetic turbulence in the plasma it-
self, as the electromagnetic fluctuations induce ‘“random”
motions in the directions perpendicular to the average mag- 5B(k)oc(k2|2 KAy YA+ 12’ @
netic field. For low frequency magnetic turbulence and LR
strong background magnetic fieRl},, the particles approxi-
mately follow the magnetic field lines. The quantitative de-
scription of magnetic field line transport represents a lon
standing problem,_since different trangport regimes can b pectrum at constant amplitud(k). Then, forl =1, the
obtained, depending on the fluctuation leveleak or . .yevectors are squeezed in the plane perpendiculBg,to
strong, on the anisotropy of magnetic tur.bulence, descrlbeq()rming a pancakéor cripe) in the k space. In such a case,
by the values of the turbulgnce correlation lengths, on thene magnetic turbulence is termed quasi-PD4], the 2D
Fourier spectral representation, and on the assumed dimegase peing obtained by taking the lirhjt, — (and keep-
sionality [i.e., two dimensions2D) or 3D] of the magnetic  ing only the Alfvanic polarization for MHD turbulence, see
fluctuations [1-6]. We assume an unperturbed fieBb  |aten. Conversely, fol|<I, the wave vectors are elongated
=B,e, and magnetic fluctuationsB(r) depending on the along By, forming a cigar(or “spaghetto”) in k space. In
three spatial coordinates, but frozen in time. The latter assuch a case, the domain of magnetic turbulence is quasi-1D,
sumption corresponds to considering particle velocitiesand this magnetic turbulence is termed slab model. Clearly,
larger than the typical magnetic wave velocity, e.g., Affve whenl =1, the turbulence is spherically symmetric. We also
velocity. Note that field line motion in such fields is formally note that if the turbulence is not axially symmetric, as it is in
equivalent to the problem of passive tracer transport in dhe cases considered here, it is necessary to use three corre-
two-dimensional, time dependent velocity fi¢iti8], so that lation lengths, say,, I,, andl,, in the expression of the
the main results obtained here can be applied to the problefrourier amplitudes, Eq1). This case is of interest in many
of transport in fluid turbulence, too. astrophysical plasmas, like the MHD turbulence in the solar

In this paper, we would like to concentrate our attentionwind and the magnetic fluctuations in the Earth’s magneto-
on the effect of different correlation lengthsandl, in the  pausd15-19. In particular, transport of magnetic field lines
directions parallel and perpendicular to the mean magnetid the case of anisotropy in the plane perpendiculaBgo
field By, respectively, that is, on the influence of anisotropythat is whenl,>1,, has been considered by Pommetsal.
in turbulence with axial symmetry. Indeed, in many physical[11].
systems the magnetic turbulence is not spherically symmet- Several issues need to be taken into account when consid-
ric. Axially symmetric turbulence can develop in a plasma asering magnetic field line transport in anisotropic turbulence.
a result of a background magnetic fi¢@-11], or as a con- In the case of weak turbulence, that is when the level of
sequence of the geometrical features of a plasma device: infauctuation 6B/B is low, one has the quasilinear regime, in
toroidal configuration, for instance, the correlation lengthwhich the magnetic diffusion coefficient B~(5B/BO)2IH
along the toroidal direction is usually much larger than thos¢20-25. It was shown by Kadomtsev and Pogui4é that
in the two other direction$12,13. Also, magnetic turbu- the quasilinear regime is more properly obtained when the
lence withl>1, is often assumed as an approximate modedimensionless paramet&= (5B/Bo)(l;/l,), is very small,
for the solar wind[9,6] as well as the interstelldd4] mag- R<1. In the opposite limitR>1, Kadomtsev and Pogutse

wherek is the wave vectork, (k) is the projection ok in
the plane perpendiculdin the direction parallglto By, and
is the spectral index. Let us introduce a cut off of the
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showed that the percolation theory would be requifeee  stochasticity is reached, so that the KAM tori are destroyed,
also Galeev and Zelenyi[26]). Actually, R=(6B/  and normal diffusion ¢=1) is attained. This behavior is
Bo)(l}/1,) turns out to be the Kubo number for the stochas-common to many chaotic systems which exhibit Cantori
tic system under consideration. The Kubo numBewas  structures, and has been found in a variety of different physi-
originally defined as a parameter measuring the strength afal system$42,44). Therefore, for spatially periodic systems
perturbations in a stochastic Liouville equatip27]. For  to which the KAM theorem applies, anomalous regimes are
fluid turbulence the Kubo number is given by the product ofpossible.
the (rmg) fluctuating velocity times its correlation time, di-  Summarizing, we can see that different transport regimes
vided by the correlation length. Since for field line transportmay be found depending on the fluctuation le¥Bl/B, and
in frozen magnetic turbulence time is to be changed for @n the ratio of correlation lengthig/I, , that is on the an-
coordinate along the unperturbed magnetic field, the abovisotropy of magnetic turbulence. In order to understand when
expression oR is obtained. The smallness of the Kubo num-there is the transition from one regime to another, we will
ber allows us to use a perturbative treatmé]. Also, for  consider a numerical simulation of magnetic field line trans-
times much longer than the correlation time, a Markovianport where 5B/B, and /I, can be varied smoothly, and
master equation can be obtained from a Liouville equatiorwhich is presented in the next section.
[27,28 whenR<1. We find, in addition to the fact that a higher fluctuation
Recently, Isichenkd4] derived the scaling of the diffu- level 6B/B, makes the system more stochastic, that by in-
sion coefficient with the level of fluctuations in the percola- creasing the rati¢; /1, at fixed 6B/B,, the stochasticity in-
tion limit, R>1, obtainingD~1, (I, /1))¥*%6B/By)"%in  creases. It appears that the different transport regimes can be
the case of a monoscale turbulence, i.e., when the fluctuatioorganized in terms of the Kubo numb&=(5B/Bg)(l;/
spectrum is peaked on one frequency. The percolation scal;). WhenR<1 weak chaos, closed magnetic surfaces, and
ing has been confirmed numerically, with some uncertainityanomalous transport regimes are found. WRenl the dif-
by Ottaviani who used a 64 wave modes moffg] and, fusion regime is Gaussian, and the quasilinear scaling of the
more precisely, by Reuss and Misguisch who used a 7168iffusion coefficientD, ~(8B/By)? is recovered. Finally,
wave modes29]. Very recently, the percolation scaling, for R>1 the percolation scaling of the diffusion coefficient
slightly modified from 0.7 to 0.64, was obtained with a deco-D , ~ (5B/B)°" is obtained.
rrelation path method by Vladt al. [8]. Besides such ana-  In Sec. Il we present the numerical model, with special
lytical limits of the Kubo number, it would be interesting to emphasis on the treatment of the anisotropy of turbulence. In
quantify the transport properties for arbitrary valuefphs  Sec. Ill we present the numerical results, showing the Poin-
well as for strong fluctuation levelsB/By~1, as itis found  care sections, the diffusion coefficients and the anomalous
in many space and astrophysical plasmas. In such cases itd#fusion exponents, as well as the kurtosis. It is also shown
necessary to make use of numerical simulations of field lingow the results can be organized in terms of the Kubo num-
transport in a turbulent magnetic field. Such a task has beeperR. In Sec. IV a discussion of our results and the conclu-
undertaken by several authd@0-36. In particular, Refs.  sions are given.
[30-32 show that in isotropic turbulencgéhat is whenl|
=|, =), at low fluctuation levelsgB/By=0.2, anomalous, Il. NUMERICAL MODEL
i.e., superdiffusive and subdiffusive regimes can be found.
These regimes are characterized by a mean square deviation The magnetic field lines are tangent to the magnetic field

(sz) which grows as B(r) at a generic point, thus the field line equations are
obtained as
Ax?)=2D s?, 2
(ax3 @ dr B B(r) @
wheres is the field line lengthD is the “diffusion coeffi- ds [B(n)|’

cient,” and a# 1 is the anomalous diffusion expondB7— ) ) ) . .

44]. We warn the reader that in this paper anomalous diffuvhere the field line lengtB is used as an integration param-
sion means the departure from the Gaussian valuel, gter. Equ§t|or(3) is a nonlinear stoqhastlc o.rd|r!ary dn‘fgren—
contrary to most of plasma physics literature where anomatidl quations. We set up a numerical realizatiorBf) in
lous diffusion is meant for non-collisionally induced trans- the following way: the magnetic field is taken to be the sum
port. While normal, Gaussian diffusion correspondsato ©Of @ background field given bg,=Boe, and of static mag-

=1, subdiffusion(superdiffusio is described byr<1 (o  NeliC perturbationsB(r).

>1). Also, superdiffusion is interpreted in terms of avie The magnetic fluctuationsB(r), are given by

random walk[38—43. Such anomalous transport behavior

are found when the fluctuation level is low, that is when SB(r)= >, sB(K)e?(k)expi[k-r+ o], (4)
most magnetic surfaces are closed, i.e., form KAM tori, and ko

a part of field lines move in the stochastic layer. In between

KAM tori and ballistic trajectories a Cantori layer is found, wheree”)(k) are the polarization unit vectorg” are ran-
which can give rise to temporary trapping of field lines dom phases, andB(k) is the amplitude of the mode with
(yielding @<1) and to long Ley flights (yielding a>1)  wave vectork given by Eq.(1). Such a Fourier amplitude
[11,30-32,39-42,45The Levy random walk is made up of represents a power-law spectrum, and is similar to what is
jumps whose lengths have a power distribution for longused in Refs[30,32,11. We have the following unit vectors
jumps. Increasing the level of fluctuations a regime of globaffor the two polarizations:
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l_L> ]” - l_]_< l” troduced by takindN,,;,>1. Therefore we have lzandspec-
L S

trum. In this way we avoid the spurious periodicity effects
introduced by the discretization of tlkespace similar to the
poor statistical representation of the longest wavelength
modeqd 32]. With this choice, we obtain the longest modes in
each direction with wavelengths=\,=I, andA,=I, by
settingn; equal to the smallest integer larger thidp,,. In
other words, the correlation lengths and|; determine the
physical features of the modelled magnetic turbulence. Fur-
thermore the number of wave vectors is the same along each
axis, even with differents values ¢f andl; [see Eqgs(6)
and(7)] [46]. This ensures that a good statistical representa-
tion of turbulence is given even for those wave vectors
which lay along the “short” directions ik space(in other
words, if the number of the wave vectors along one axis
would be merely proportional to the length of the ellipsoid
axis, only few wave vectors would be found along the short
axis of the ellipsoid, and the discretization of turbulence
would lead to the dominance of just a few moddadeed,
FIG. 1. Simulation boxupper figuresandk space(lower fig-  we are going to simulate very strong anisotropies, &.g.,
ureg representation for two different configurations of the (:orrela->|H and|l<|H, with the same number of modes which we
tions lengthgSlablike model: left hand side figures, 2D-like model: yse for isotropic turbulence. For instance, the so-called
right hand side figurgs quasi-2D turbulence, correspondinglfél , >1, will be rep-
resented by a fully 3D spectrum, although squeezed to a
crépe in the ink space(at variance with other works where
the quasi-2D turbulence is represented by a strictly 2D spec-
trum). This garantees that the continuum spectrum of turbu-
where eY)(k) represents the Alfwgic polarization and lence is well represented by our discretized spectrum and
e@(k) the magnetosonic one. The reality 6B(r) is en-  that we can pass smoothly from one raljél, to another.
forced by settingsB(”)(—k) = 5B(“)(k) and ¢(_‘le= - ¢ff)_ Further, in physical space we have the same number of grid
Here(like in Refs.[30,32,1]), we consider the same param- points in all the directions, with density of grid points pro-
eters for both polarizations, even if different set of correla-portional to the field gradients in each direction. Thus we
tion lengths, weights and spectral index could be given foconsider that our numerical representation of turbulence is

e(k)=i é2kk):iﬁ%><élkkx (5)

kX By
[kXBg|’

the two polarizations. very well suited to study the effects of varying anisotropy.
During the integration of the magnetic field linesee Eq. The value ofN, is set to 14, whileN,,,= V17. We set

(3)], we save computer time by introducing a 3D lattice withfor all the numerical rung/=3/2, which is the value of the
8N .« POiNts in each direction, on which the magnetic field spectral index inertial range predicted by Kraichria@7].
components are computed exactly. Then, when integrating;urthermore, we set for all runs mig(L,)=L whereL is the
the magnetic field is obtained by quadratic interpolation orunit length to which all lengths in this paper are normalized.
this grid. We checked that 8 points per minimum wavelengt{ That is, forl /I, >1, L,=L and L,=(I/l)L; for I}/l

are enough to get satisfactory precis[@®,32,. <1,L,=LandL,=Ly=(l, /l))L.]
We consider the wave vectors in the following way: The desired fluctuation leveiB/B, is obtained by nor-
malizing the magnetic fluctuations by setting
Ny Ny n,
k= 277. T L} T 7 T ’ (6)
L, Ly'L, 5
5B g;éﬁw

where the harmonic numbens are integers. The periodicity — = 1—32 (8)
length in each direction ikx=Ly =Nl andL,=Npyl |, Bo (8Nmax) °Bo

where N, is the minimum harmonic numbédsee belov,
therefore it is proportional to the correlation length in thatwhere the sum is made all over the grid points. Then the
direction. Thus, the simulation box is a parallelepiped withnumerical simulation will be done for different values of
square basis, and the domain of wavevectols $pace is an |/, and6B/B,, and hence for different values of the Kubo
axially symmetric ellipsoid, see Fig. 1. Indeed, the harmonigiumber.
numbers have to satisfy
Nﬁ']in<n)2(+n§+n§<Nﬁ1axy ) I1l. NUMERICAL RESULTS

Once a numerical realization of the magnetic field is ob-
whereNax 1S the maximum harmonic number, which corre- tained as described in Sec. Il, we integrate the magnetic field
sponds to a short wavelength cut off. This is related to thdine equationg3). We make two kinds of studies. First, in
extention of the spectrum and its value is fixed by the avail-order to get a qualitative overview of transport and of the
able numerical resources. A long wave length cut off is in-structure of the magnetic field, we draw the projection on the
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TABLE |. Parameters of the different runs of numerical simu- the xy plane, so that only a small amount of the fluctuating
lations. field is alongz. (Note that wave modes witk exactly par-
allel to By, that is withn,=n,=0, are excluded from our

2 2 ~ ~
Run W/l (9B3)/{3Bx) simulation because; ande, are undetermined; this is not
1 100 2.00 relevant to the magnetic field model due to the high number
2 10 1.93 of wave modes, typically 11512; in addition, this explains
3 3 1.61 why for run 4,( 8B2)/( 5B2)=1.04, rather than 1 as would be
4 1 1.04 expected for exact isotropy.
5 0.33 0.45
6 0.1 0.16 A. Poincare sections
7 0.01 0.12

The Poincaresections for some of the runs are plotted in
Figs. 2 and 3. Looking at these plots, it can be seen that, due

planexy of the intersection of the magnetic field line with a t0 the introduction of the longwavelength cut ofp;,
plane at integer values afL,. We will call this projectiona =v17, we do not observe, even for very high anisotropy,
Poincaresection. We follow a few field linegtypically, 12  effects of periodicity in these figures. Also, transport is rather
lines) integrating Eq.(3) from s=0 to s=600,. As the isotropic in thexy plane, as it should be sintg=1,=1, . In
field lines are traveling mostly alongthen we have in this Fig. 2, the Poincaresections are plotted for a ratig/l,
way a view of the evolution of the transport transversal to thdncreasing from left to rightthat isl; /I, =0.1, 0.33, and 3,
magnetic field. Second, we do an accurate quantitative studipr respectively runs 6, 5, and.3Two different fluctuation
by calculating the varianceg@ x?) as a function of, aver-  levels 6B/B, are plotted in the figuresB/By=0.1 for the
aged over 1000 field lines. In both cases the starting point ofPPer panels andB/B,=0.3 for the lower panels, so that
each field line is taken a=0 and is randomly distributed in the fluctuation level is increasing from top to bottom. The
the square &x=<L,, O<y<L,. differences between the various runs are striking: for the
The different runs, where the ratlg/l, is varying, are lower ratiol;/I, (on the lefi we distinguish very well de-
described in Table I. Also reported is the ratiéB2)/( 5B2), flped magnetic surfaces a_nd magnetic |slands, while for the
which shows how the magnetic fluctuation energy is distrib-"igher ratiol /I, (on the righy, the magnetic surfaces are
uted along the different directions, for each realization of thecOmpletely destroyed even at moderate fluctuation levels.
fluctuating field(clearly, this ratio equals 1 fo=1, , for Therefore an increase of tm@.n%, for the same fluctuation
run 4. While the ratio( 583)/( 5B2) in thexy plane equals 1 level, increases the stochasticity of the system.

(not reportedl because of axial symmetry,6B2)/(5B2) s sAt\:nI?égielssc:ggr?;ztgfsﬁoaneln;rretféeCi:i/ %BTBakisntgf
tends to 2 forl| /I, —, and becomes very small foy/I, y Ic. HOwever, vald 0!

; the only parameter which determines the stochasticity of the
—0. The former result is because for very laigél, the . . 2
. system. Rather, it appears that anisotropy, quantified by
wave vectors are squeezed in the plane, and each wave . .-
T A [j/1,, has a very strong influence on the stochasticity of
vectors has one polarization in the/ plane (e_l) and one  magnetic field lines. It is clear from Fig. 2 that stochasticity
almost parallel taB, (&), so thatsB, gets twice as much increases with /I, . This in spite of the fact that the mag-
independent contributions &8, or 6B, . The latter resultis netic fluctuation energy in the perpendicular direction, de-
because for very smdl|/l, all the wave vectors are aligned scribed by the ratiq 555)/(55@ in Table I, decreases when
alongz, and the polarization vectoes ande, almost lay in I}/, increases. We note here that although a very large

L 1,=0.1 1,1,=0.33 L 1,=3

@ o - |® \/%g i

2 Y -
2ol Suske '] S|
N 7 _
6B/B=0.1

-5 T T

FIG. 2. Poincaresections at variou$B/B,
and for different ratiol}/I, . (a8)—(c), 8B/Bgy
=0.1; (e—(9): 6B/B;=0.3; (8 and (e): I}/1,
=0.1; (b) and (f): I;/1,=0.33; (¢) and (g):
Iy, =3.
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((Ai?:l" /Nl ={Od 6B/B,=0.003

1.0+

y/Los-|

y/L 0.5+

0.0+

FIG. 3. Poincaresections for runs with the
same value oR=(6B/By)(l /1), but different
fluctuation levels and anisotropy degreds):
6B/By=0.003 andl;/l, =10 (run 2, R=0.03);
(b): 8B/By=0.3 and I/, =0.1 (run 6, R
=0.03);(c): 6B/By=0.015 and; /I, =10(run 2,
R=0.15);(d): 6B/By=0.15 and /I, =1 (run 4,
R=0.15);(e): 6B/By=0.33 and /I, =3 (run 3,

-1.

R=1); (f): 6B/Bo=1 andl/l, =1 (run 4,R
=1).

number of studies has addressed the issue of how the sto-

B. Anomalous transport

chasticity level depends on the fluctuation level, this is the 1he gifferent transport regimes, which are suggested by
first time that the influence of anisotropy on stochasticity sy, Poincareections, as well as the role of the Kubo number

pointed out with a systematic study.

R, can be better caracterized by studying quantitatively the

From the inspection of Fig. 2 we can understand that the g0t properties. In this connection, we integrate (B1.

level of stochasticity depends on a parameter which is mad
up of the level of fluctuations and the degree of anisotropy. It_

appears that the Kubo numb&=(B/Bg)I;/l,, which

originally was defined to measure the effect of stochasti

perturbations over one correlation tingsee the Introduc-

tion), can be such a parameter. To this end, we show in Fig.

3 some Poincarsections with differentsB/B, andly/l,,
but the same value dR: it is apparent that the level of sto-
chasticity is(at least from a visual point of viemthe same
for a given value oRR. In other words the value dR deter-
mines the level of chaos, witR~1 corresponding to global
stochasticity.

The Poincaresections on the left panels of Fig.(those

compute the variance§Ax?), where Ax;=x;—x{? (i
=X,Y), as a function of (here the field line lengtls has a
role analogous to time Then we make a fit of Ax?), with

the anomalous transport law

(AX?)=2D; s 9

and determinex; and D; whens is large enough to attain
asymptotic values. The asymptotic behavior is usually ob-
tained fors=1000_, or less. Here, the exponeat charac-
terizes the random walk lawe; =1 in the Gaussian diffusive
regime, «;=2 in the ballistic regimep;<1 in the case of

with I;<I,) suggest a subdiffusive behavior, as it is foundtrapping(subdiffusive regimg and 1<;<2 in the case of

also from the study of transpo(see latex. The very well

Lévy random walk(superdiffusive regime (Refs.[30,40—

defined closed curves plotted on the left panels show that thé2,44)). We note that the superdiffusive case when d,
magnetic field lines spiralize around the flux tubes and stay<2 usually corresponds to an alternate succession of short
on them for a long time. A$B/B,, is increased, the stochas- jumps and of long jumpsLevy flights) between two mag-

tic layer is getting thickefalthough still very thin and this

netic flux tubes. To have a good statistics, the above trans-

means that the field lines can escape more easily from ongort expression is fitted to the numerical results obtained
flux tube and then be trapped in another. Some other fieltvith a large number of field lines, tipically 1000.

lines have superdiffusive behavior because they are moving In Fig. 4, we plotted the anomalous diffusion exponents
for quite long distances in the stochastic layer, and are sul®s a function oféB/B, for a selection of runs. The same

ject to long displacements very similar to\heflights (see
the open trajectories in Fig).2

behavior found in previous studi¢d30-32,1] is confirmed:
for a given degree of anisotropyy; tends to 1(Gaussian
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low contribution to transportthis contribution goes asymp-
totically to zero fors—). Other field lines are in the sto-
chastic layer and move in between the magnetic “islands”
with long coherent displacements which correspond to the
Levy flight (leading to superdiffusion and others are on
Cantori layers. The latter is a region of broken magnetic
surfaces which are adjacent to KAM tori, on which field
lines can be trapped for long times and then escape into the
stochastic layer. It is typical of Cantori layers to have a frac-
tal structure as well as a hierarchy of trapping times with
power law distribution[42—44. It is the balance between
trapping in Cantori and Ly flight in the stochastic layer
that leads either tax<<1 (trapping prevails or to a>1
(Lévy flights prevai) [30]. At the same time, it is well
known that anomalous diffusion is found in systems charac-
terized by weak, incomplete chap&2-44.

: On the other hand, increasing the level of stochasticity,
Lot i.e.,R=(6B/Bg)(l/l,), the area occupied by KAM tori de-

‘ creases, the thickness of the stochastic layer increases and,
because of the enhanced instability of trajectories, the length
of Lévy flights and of trapping times on Cantori both de-
crease. Thus, in a regime of global stochasticity the field line
random walk approaches a Gaussian regictearacterized
by finite jump length and jump timeand normal diffusion is

R
»
I O O B

R
||||T\|||

recovered.
FIG. 4. Anomalous diffusion exponents, and a, versus _ -
8B/B, [(a) and(b)]. KurtosisK, andK, versussB/By [(c) and(d)]. C. Threshold of the Gaussian diffusion
/1, =100 squarest /I, =10: crossesl, /I, =1: triangles;l /I, Let us now investigate what are the conditions to have
=0.1: circles. normal rather than anomalous diffusion. As shown above,

the anisotropy in the correlation lengths influences in a con-

diffusion) when 6B/By, is increased, and; is different from  sistent way the regime of diffusion. In particular, from Fig.
1 for low 6B/B,. In the latter cases, we find mostly subdif- 4, we note that that the value 6B/B, for which the kurtosis
fusion, i.e.,a,<1, a,<1 (see later. However, the smaller becomes close to 3, decreases when increasing the ratio
l)/1,, the higheréB/B, has to be in order to attaimj=1, I/l . Also from Fig. 6 of Ref[11], we note that the sto-
see the upper two panels of Fig. 4. This agrees with the facthastic regime is reached for a higher fluctuation level when
discussed above, that global stochasticity is reached for tne anisotropyl,/I, is increased, i.e., the threshold for the
higher level of fluctuations whelp/I, is decreased. We note Gaussian regime is increasing with the raltjgl, (in Ref.
that o;# 1 corresponds to a non Gaussian “dynamics.” In-[11] I,=I,, so that the ratid, /I, mimics |, /I|). We ob-
deed, the Ley random walk is characterized by a distribu- served in connection with Fig. 3 and in previous wof4§]
tion of free path lengths which is power law rather thansimilar stochasticity levels when the Kubo numbg&r
Gaussiaf40,41 and which has diverging second order mo- = (6B/Bo)(l;/I,) is the same. Also, the quasilinear regime
ment. Furtherg;=1 does not always mean Gaussian regimeand the percolation regime are obtained for opposite limiting
but can be the result of a mix of trapping events anghylLe values ofR. For these reasons, we plotted in Figa)5the
flights such that normal transport is fouffs]. This fact can  value of (5B/Bg)* for which the kurtosis attained 3+0.3
be evidenced by computing the kurtosis=(Ax!)/(Ax?)?,  (that is the Gaussian value 10% [31]), versus the anisot-
which equals 3 for a Gaussian distribution. A kurtosis largerropy ratiol; /I, . We observe an almost inverse linear rela-
than 3 corresponds to enhanced importance of the (ads tion between the ratidy /I, and the threshold for Gaussian
for Lévy stable law distributiopy while K;<3 implies very  regime (©¥B/By)*. In other words, 6B/Bg)* /1, = con-
short tails of the distribution. From the kurtosis in Fig. 4, we stant holds.
have indication of Ley flights (since K;>3) for various Then we can define the threshold Kubo number, that is
cases, even withy;j=1; then for a particular fluctuation R*=(6B/Bg)*l|/I,, at which we reach the Gaussian re-
level, that increases with the ratip/l;, the kurtosis is equal gime. Therefore, we have anomalous transport regimes for
to 3, i.e., the bunch of magnetic field lines has a GaussiaR<R*, and Gaussian diffusion f&®>R*. In the Fig. §b),
distribution, corresponding to normal diffusion. we plottedR* versus the ratid; /I, . We can see th®* has

Note that anomalous diffusiom;# 1, is mostly found for  values going from 0.3 to 0.6, so thBt ~1 is a reasonable
small values ofl| /I, . We interpret this as the influence of criterion to determine the Gaussian threshold in our simula-
the limited stochasticityweak chaoson transport: in the tions. We note that this interpretation of the role of the Kubo
presence of good magnetic surfa¢ese Fig. 2and of KAM  number is fully consistent with that obtained from the above
tori, many field line are trapped on KAM tori and give a very analysis of the Poincargections.
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FIG. 5. Minimum value of the fluctuation levelsB/Bg)* at :
which the kurtosis is between 3.3 and 2upper pane| and Kubo (b)
numberR* (for which the system passes from anomalous regime to s
Gaussian regime, lower panels a function of the ratio; /1, for 10 \ | | |
the different runs. 0.01 0.05 0.1 05 1.0
Actually, there are other parameters which influence the (SB/BO

threshold of stochasticity, as well. For example, Zimbardo

et al. [30] showed that with a longer spectral extention, glo- FIG. 6. Diffusion coefficientsD, and D, versus 6B/By (in
bal stochasticity is attained for lower values of the fluctua-Gaussian regime I /1, =100: squares|;/I, =10: crosses]; /I,
tion level (a well known result, see also Ref&2,49). Re- =3: circles;l; /1, =1: triangles. To estimate the scaling Df with
cently, Pommoiset al. [32] showed that the shape of the the fluctuation level,D;x(5B/Bo)”, we plotted both the quasi-
spectrum, that is the balance between the injection zone arifear diffusion scaling withu =2 (dotted ling and the percolative
the inertial range in the simulated turbulence, also influencediffusion scaling with..=0.7 (dashed ling

the reach of the Gaussian regime. Here we singled out the

influence ofl /I, on the stochasticity and Gaussian thresh-and compare it with the quasilinear limit and with the perco-
old, and we leave for future investigations the study of thejative limit.

influence of the other parameters. In Fig. 7,D, is plotted for all the runs as a function of the
Kubo numberR. Several interesting features can be appreci-
D. Scaling of the diffusion coefficients ated from this figure. The quasiline@rercolativg scaling of

In F|g 6, we p|otted the diffusion Coefﬁcien&i for the the diffusion coefficient W|th/BO is giVen by the dotted

various runs but only when we are in the Gaussian regime. Ifdashed lines (at a fixed anisotropy ratig /I, , the scaling
practice, the cases wifR< 1, which would correspond to the of D, with 6B/B, is the same as that witR). Since each
quasilinear diffusion coefficient according to the analyticaldifferent symbol in the figure represents a run with given
studies, turn out to be in the anomalous diffusion regime, s@nisotropy, it is easy to see that fer<1 theD, follow the
that the coefficienD; of the fit of Eq.(9) does not have the quasilinear scaling for all the different anisotropy ratios.
meaning of a standard diffusion coefficient. We note thatAlso, for R=10, the diffusion coefficient scales witas in
transport is faster when the ratlg/l, is increased, espe- the percolative regime. It is possible that the scalindof
cially for the lower fluctuation levels. Indeed, the scaling of with R would be somewhat slower than the value proposed
the diffusion coefficient withoB/B, appears to be different py |sichenko,.=0.7 [4], and in agreement with theorical
for the different degree of anisotrofggompare for instance predictions by Viadet al. [8]. However, our data points are
runs 1 and # . . _not enough to stricly constrain the value pfin the perco-

In order to make the comparison with the analytical lim- 5tive regime. FronR=1 to R=10, an intermediate scaling
its, let us introduce the transversal diffusion coefficint,  gppears: although this might look similar to the so-called
corresponding to diffusion in the plane perpendiculaBgo  Bohm scalingD, ~R, we consider this to be only a transi-
Since we have(Ar?(s))=(Ax*(s))+(Ay?(s)), we obtain  tion regime from the quasilinear scaling to the percolation
directly thatD, =D,+D,. We now consider more closely scaling. Moreover, the theorical foundations of the Bohm
the scaling of the diffusion coefficienfs, with the fluctua-  scaling have been recently questioned by Reuss and Mis-
tion 6B/By, that is guich and Vladet al.[29,8].
5B\ & If we look at the left most part of Fig. 7, we have a
B_) (10) confirmation of the fact that the Gaussian diffusion regime is

0

D x
+ ( reached wherR=0.3—0.4, since the diffusion coefficient
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el vl el including the particular dependence on the correlation
10" & R = lengths shown in Eq(11), although shifted to larger values
] 00 _1_,+ a F of R, 0.3=R=<1. The reason for which the quasilinear re-
] andty *%Hﬂ' i gime is obtained foR<1 in the analytical studies, whereas
2 z . - . . .
1074 K&B (/)/,ﬂl’— - g - we find it for R<1, is because the system, in the analytical
] »~ s o g studies, is assumed to be stochastic from the start. However,
i 2770 +++ [ the magnetic field line equations have an Hamiltonian struc-
D, 10°= AA' 4. 0 L ture such that the level of stochasticifye., of chaosis low
3 o,,,+”' B d for R<1. In such a case closed magnetic surface, i.e., KAM
] r tori, are found and anomalous transport results.
O
104—: + E
E u g
7 |1_-_|.-' [ IV. DISCUSSION AND CONCLUSIONS
10° LI L] B N R AL B B LI B AL In this paper we have studied magnetic field line transport
10" 10° 10" 10? 10° in 3D magnetic turbulence with anisotropy in the directions
R parallel and perpendicular to the magnetic field. Particular

attention is devoted to the representation of the anisotropy, in
FIG. 7. Anomalous diffusion coefficien, versus Kubo num- Order to assess its influence on the transport regimes. The

ber R. 1;/I, =100: squares};/l, =10: crosses| /I, =3: circles; ~main results of the present study are the following: We find

Ij/1, =1: triangles] /I, =0.33: stars. We also plotted the quasilin- that stochasticity increases both increasing the fluctuation

ear scaling withu=2 (dotted liney, and the percolative scaling level 5B/B, and increasing the ratig/I, at fixed 6B/By. It

with 4 =0.7 (dashed lines appears that the different transport regimes can be organized

) in terms of the Kubo numbeR= (5B/Byp)(l;/l,). WhenR
are not obtalneq for smaller valuesRfFurthermore, we can <1 \yeak chaos, closed magnetic surfaces, and anomalous
see that for a given value &, D, depends strongly on the transport regimes are found. Wh&=0.3 the diffusion re-

?nlstcr:tropy rﬁt'dl\\;:i ' V_‘If'rt]h the Ialzger vague OD_iI obta|:1¢d 4 gime is Gaussian, and the quasilinear scaling of the diffusion
or the smatert /1, .- 1his Tesult can be easily expiained .. qficient D, ~(6B/By)? is recovered forR up to 1. Fi-

when we write down the quasilinear diffusion coefficient in nally, for R>1 the percolation scaling of the diffusion coef-

terms of the Kubo number ficient D, ~(6B/B,)°’ is obtained. These results are consis-
2 |f tent with those of Zimbardoet al. and Pommoiset al.
Dql”—‘ﬁ'm(B—) lj=Ba- R, (1) [30,37, where the magnetic turbulence is isotropic and
0 ” anomalous diffusion is found fofB/By=<0.2. The percola-
Itis clear that the smalldi/I, , the largeD, ; also, inspec- tio_n scaling of the diffusior_w coefficient was pr(_eviogsly ob-
tion of Fig. 7, shows that our data points follow this relation tained in Refs[5,29]. In particular, Reuss and Misgui¢B9]
rather well. A fit of the data points in the quasilinear regimerealized 2D simulations, to study particle diffusion in the
to Eq. (11) allows us to determine the proportionality con- guiding center approximation, and obtained the percolative
stantB as B4~0.015. In a similar way, in the percolative scaling,u~0.7_. Thereforg this analytical Iimit.is c_onfirmed
regimeD, is larger for smallet;/l, , and we can write the by the numerical results in the/l , —o approximation.
Isichenko diffusion coefficient in terms & It is interesting to note that a single parameter, the Kubo
103 5 numberR= (6B/By)(l;/1,), allows us to “classify” both
_ L) (%8
owa{i!] 15

2 . . .
0.7 1< the quasilinear and percolative regimes, and the level of sto-
I

=B,—R%’ (12 e :
Py ' chasticity of the system. This unexpected result suggests that

there is a relation between the Kubo number and the level of
This is the same expression as above, @q), apart from  chaoticity of the system. In the problem of magnetic field
the dependence oR and the proportionality constarg, . line transport, the chaoticity is measured though the Kolmog-
This relation is approximately followed by, in the perco- orov entropyh [22,48, which corresponds to the largest
lative regime,R=10, too, and a fit of the data points yields Lyapunov exponent of field lines. A quasilinear estimate of
Bp~0.06. the Kolmogorov entropy can be obtained als

It is important to notice here that although the Kubo num—z(éB/Bo)Z(IH/If) [22,30,48. It is immediate to see that the
ber R=6B/Bgl /1, is the fundamental parameter which de- Kolmogorov entropy can be expressed through the Kubo
terminates the transport regime, e.g., anomalous, quasilineatumber ashq= RZIIH. Therefore the Kubo number, origi-
or percolative, yet it is not the only parameter to determinenally defined as the parameter whose smallness allows a per-
the value of the diffusion coefficiem, , as clearly indicated turbative treament of a stochastic equatj@], is very di-
by Fig. 7: the anisotropy ratif /I, also plays an important rectly related to the Kolmogorov entrofgr the Lyapunov
role (of course, we are limiting such considerations to theexponentsof the system, and is an appropriate parameter to
parameters which are varied in the present study guantify the stochasticity of magnetic field lines. It would be

Finally, it is interresting to note that the analytical studiesinteresting to investigate numerically the relation betwhen
predict a quasilinear regime f&t<1 where we find anoma- andR outside of the quasilinear regime and as a function of
lous transport; however, the quasilinear regime is still foundthe degree of anisotropy.
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